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The Langevin Dynamics of Vibrated Powders 
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We present a microscopic theory of the relaxational behaviour of a granular 
pile submitted to vibration, elucidating the different roles of collective and 
independent-particle relaxation. We write down and solve Langevin equations 
for these processes, which have an explicit coupling. The analysis of the solution 
in terms of independent-particle and collective relaxations provides a consistent 
framework for the interpretation of experimental results. 
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Powders have been of interest to engineers (1) for a long time, but it is only 
recently that they have become an important  and exciting area of theoreti- 
cal(2 7) and experimental (8'9) physics. In addition to phenomena exhibited 
by other amorphous  systems, their randomness of shape and texture 
strongly influences their static and dynamic properties. Powders are highly 
nonlinear and hysteretic, as a consequence of which they show complexity, 
so that the occurrence and relative stability of a large number of metastable 
configurations govern their behavior. They exhibit behavior that is neither 
completely solidlike nor completely liquidlike, but which is intermediate 
between the two. Like liquids, powders can take the shape of their con- 
taining vessel, but unlike them, they can also adopt a variety of shapes 
when they are free-standing. This leads to the everyday (but nonintuitive!) 
phenomenon of the angle of repose, which is the angle that a sandpile 
makes with the horizontal. In reality, the angle of response is not unique, 
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but depends on the history of the sandpile(3): this is related to, among 
other things, the phenomenon of dilatancy, (1) which is the ability of 
granular materials to sustain different degrees of packing. The compactivity 
2, which was defined in recent statistical mechanical treatments of 
powders, (2) measures the efficiency of packing, so that powders with a high 
X are strongly dilatant. 

One of the most interesting aspects of powders is their relaxational 
behavior, because it manifests many of the features referred to above. In 
this paper, we unify earlier computer simulation approaches (5'1~ within the 
framework of a microscopic theory of relaxation in a vibrated granular pile. 
This is based on a qualitative picture of competition and cooperation 
between independent-particle and collective relaxation put forward in 
earlier work(3~: in this short communication we quantify these ideas, and 
show that they give rise to quite distinctive behavior in the time 
dependence of the slope of the pile. Our results are in qualitative accord 
with recent experimental work. ~ 

Consider a pile of grains on a vibrating table. The state of the pile may 
be described by the macroscopic angle of tilt 0 and ~b, the local deviation 
from 0, caused by surface roughness, which is based on the definition of the 
Bagnold dilatancy angle. (1) The Bagnold angle, as originally defined, was 
the average extent to which clusters of particles protruded from the surface, 
which was in turn a measure (1) of the dilatancy; we choose to work, 
instead, with 052_= (~2)p i l  e a n d  below will quantify Bagnold's idea by 
making an explicit connection between 052 and the compactivity X- [see 
Eq. (3b)]. As will be seen from Fig. 1, small 05 corresponds to a well- 
packed pile (with low J() with a smooth surface, whereas large 05 
corresponds to a loosely packed pile (with high X) with a rough surface. 

It is well established (1) that any experimental measurement of the 
macroscopic angle of tilt 0 lies between two limits, the so-called maximum 
angle of stability Om and the minimum angle of repose 0r; the difference 
between these two angles is A, the Bagnold angle, which, as has been 
pointed out by other authors, (9) is a measure of the hysteresis. We make 
this idea more quantitative by interpreting A as the maximum value of 05. 
In other words, 05 is a variable whose value is bounded by A, so that small 
values of 05 will lead to measured angles 0 nearer 0r, while large values of 
05 will lead to measured angles 0 nearer 0m. It is worth mentioning that the 
origin of 05 is dynamical, in that dynamics on the surface leads to disorder, 
which is the origin of hysteresis in the configurational properties of the 
pile.(3,6) 

In the presence of an applied vibration of intensity H (scaled by the 
gravitational acceleration), (3) 0 and 05 will be time-dependent. If H is 
greater than the binding energy of the particles to their clusters, they are 
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ejected (independent-particle relaxation) from their clusters and travel in 
avalanches down the pile. The rate of change of 0 is predominantly 
governed by these avalanches: therefore we view 0 as representing the 
motion of independent particles. Conversely, if H is small relative to the 
binding energies of the particles, they are not ejected: in this case the grains 
reorganize within a cluster (collective relaxation) to minimize voids. Since 
a finite value of 45 is a reflection of the presence of dilatant clusters on the 
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r 

Fig. 1. The surface of a granular pile. The angles O r and 0 m are shown, corresponding 
respectively to the angles of repose and maximum stability; the measured angle 0 varies 
between these two limits. The angle ~b is the local deviation from 0. 
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surface, it is natural to associate the collective motion of these clusters with 
dqS/dt. We expect that for high intensities of vibration, the dominant pro- 
cess is independent-particle relaxation at the surface leading to avalanches 
down the slope, whereas collective relaxation dominates at low intensities. 
Because independent-particle relaxation occurs via cascades of particles, it 
will not lead ~1~ to the most efficient packing or to the smoothest surface. 
In contrast, we expect that when collective relaxation dominates, the 
macroscopic slope will relax slowly or not at all, and the slow collective 
reorganization of particles will lead to efficient void-filling, i.e., to a low 
compactivity and a smooth surface. 

Although we have interpreted dO/dt and dcb/dt as though the corre- 
sponding relaxation processes were independent, we expect them to be 
coupled. Physically this coupling arises because a large roughness (large 
q~a) will increase the value of 0 as explained above, and a steeper slope 
(large 0) will sustain less roughness (small ~2). In keeping with the above 
discussion, we write down coupled Langevin equations for 0 and ~: 

dO/dt = - ~ 0  - c ~  2 + ~(t)  (1) 

dq~/dt = - Fq9 - c'Oq9 + ~( t ) (2) 

where 7 and F are the rates controlling the 0 and q5 relaxation processes, 
and c and c' are, respectively, the coupling constants relating the indepen- 
dent-particle and collective processes. The second term on the rhs of Eq. (1) 
represents the contribution to dO/dt (to lowest order) of the roughness: this 
can be viewed as representative of the average mismatch between the 
dilatancies of neighboring clusters. The sign of this coupling is argued to be 
negative, as large mismatches (associated with large roughness) will 
enhance the value of 0, as discussed above, leading to an increase in the 
rate of decay of the slope. Correspondingly, the second term on the rhs of 
Eq. (2) is bilinear in 0 and ~b, and has a negative sign because large values 
of 0 contribute to a decay of ~, because steeper slopes can sustain less 
roughness. It is evident from Eqs. (1) and (2) that the coupling term in the 
equivalent Landau-Ginzburg formulation of this problem is proportional 
to 0~ 2. The respective noise terms ~ and ~ have the usual spectral 
properties: 

(~(t)~(t'))=2(O2)eq76(t--t'), (02)eq OC H (3a) 

( ~ ( t ) ~ ( t ' ) ) = 2 ( ~ 2 ) e q F 6 ( t - - t ' ) ,  (q52)eq OC X (3b) 

where the subscript eq refers to the long-time limit in the presence of vibra- 
tion. Equations (3a) and (3b) are the fluctuation-dissipation relations for a 
driven granular system, with effective temperatures proportional to H and 
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X, respectively (throughout we take the constants of proportionality to 
be unity). Equation (3a) ties in with earlier work (3'5'~~ as well as with 
the concept of granular temperature(4); in Eq. (3b) we have made the 
reasonable assumption that the effective temperature associated with the 
relaxation of clusters is related to the density of packing, so that, for 
instance, clusters are able to rearrange more freely in loosely packed piles. 

Let us now discuss the physical significance of the rate of independent- 
particle relaxation 7: we expect this to be governed by an activated process 
over a random distribution of barrier heights U related (3) to the configura- 
tional properties of a cluster. A suitable approximation is 

7(U) = 70 e x p ( -  U/H) (4) 

Note that the effective temperature controlling these kinetics comes out 
naturally from Eq. (3a). The rate of collective relaxation F is expected to 
be a similar function of the compactivity X; however, the energy barriers 
are much larger for cluster rearrangement, which leads to far larger 
magnitudes of the exponent in the analogue of Eq. (4) for F. Therefore only 
the smallest energy barriers contribute, so that we consider F to be a 
parameter, not a distribution over energies. 

In the absence of the coupling and the noise ~, the solution of Eq. (1) 
is 

( 0 ( t ) ~ u =  0(0) f o  exp[--7(U)t]  p(U) dU (5) 

where the subscript U denotes an average over the distribution p(U). If we 
make the assumption, for simplicity, that p(U) is a constant 1/Uo up to a 
cutoff Uo, we obtain upon integration 

d(O(t) ) Udt = HO(O) { exp( - 70 t) - exp [( - 70 t(exp( - Uo/H)] }/U o t (6) 

In the experiments described in ref. 9, a logarithmic decay of the slope 
0 was reported when the intensity of vibration was large; if we consider 
time scales such that 7o1,~ t ~ 7 o  lexp(U0/H), the second term in the 
brackets of Eq. (6) vanishes, while the first term is of order one. (11) Then, 
d(O(t))v/dt oc 1/t, leading to a logarithmic decay of (O(t))v with time. 
This situation is illustrated in  Fig. 2a, and will be discussed later. 

We now move on to the full solution of Eqs. (1) and (2) in the 
presence of coupling. The relaxation time of a cluster is much larger than 
that of a particle (i.e., 1/F~N/7, where N is the number of grains in a 
cluster), so that the collective motion of the cluster, represented by q~, 
forms a slowly evolving dynamical "cage" for the motions of the individual 
grains. Consequently we use a mode-decoupling scheme for the "slow" 
variable ~, analogous to that used in another context. (12) 

822/68/5-6-30 
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We first solve Eq. (2) for 452(0, and substitute into Eq. (1), to obtain 

dO/dt = -- y( U)O + ~ ( t ) - c452( 0 ) exp( - 2Ft ) 

+2c dt' e x p [ - 2 r ( t - t ' ) ]  [c'O(t ')452(t ')--45(t ')~(t ')] (7) 

Next we average over the noise term ~(~), and use a simple scheme to 
decouple the 0 and 45 processes; this involves, first, evaluating the noise- 
averaged and decoupled 452(0 from Eqs. (2) and (3b) as 

(452(t)>dec,~=452(O)exp(--2Ft)+X[1 -- exp(-- 2Ft)]  (8) 

and then replacing 452(0 in the integrand of Eq. (7) by its decoupled 
a v e r a g e  <452(t)>dec, ~. Finally, we average over the noise ~(t), and get 

dO av/ dt = - 7( U) O av - c452(0) e x p ( - 2 F t )  

+ 2cc'X dt' e x p [ - 2 F ( t -  t')] Oav(t' ) 

f2 + 2cc' e x p ( -  2Ft) [452(0) - X] dt' Oav(t') (9) 

where the subscript av denotes the average over both ~(t) and ~(t). Despite 
its complexity, Eq. (9) may in fact be solved exactly. This is done by 
differentiating with respect to time, and eliminating the integrals in Eq. (9) 
by substitution; after some algebra, this reduces to the modified Bessel 
equation. (13) The final solution is 

0av(t) = exp[ - ~ ( U ) t ]  {A(U) Iv[fl e x p ( - F t ) ]  + B(U) K~[ f  exp( - F t ) ]  } 

(so) 
where Iv(x) and Kv(X) are the modified Bessel functions, and 

~( v )  = r +  ~( v)/2 

fZF2 = 2cc'[452(0) - X] 

rv(  U) = + { [ F -  7( U)/2 ] 2 + 2co'X} 1/2 

The coefficients A(U) and B(U) can be obtained by using the initial values 
of 0av and dOa~/dt, so that 

- -  C452(0) -1"- 0av(0 ) { ~ ( U )  --  '~(U) + f / ' [ - / v  +1 (fl)/I~(f)3 + vF} 

B( U) - fir{ [K~(f) L+ ~(f)/L(f) ] + K~+ ,(f) ) 

_ O ~ v ( O )  - B ( u )  Kv(fl) A(U) L(3) 
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These equations represent the full analytical solution to the decoupled 
problem. However, since Eqs. (10) are all functions of U, we now need to 
integrate over U, as was done in Eq. (5). This was done numerically, and 
some representative plots are shown in Fig. 2, which show the form of 
0av(t) for large and small values of H, the intensity of vibration. However, 
for ease of discussion, and in view of the complexity of the form of the 
above solution, we look at its form for large times: 

f? (Oav(t)>u~ dUp(U){[(fi/2)vA(U)exp[-z+(U)t]]/l~(v+ 1) 

1 2 ) ~  +~(~/ Y(v) B(U)exp[-z (U)t]  } (11) 

z+(u)=~(u)+ vv(U) 

where ~C(v) is the incomplete gamma function. (13) We now analyze the 
above results; note that 7(U) is bounded by ~)max=70 and 
7rain = Yo exp(--Uo/H). When the intensity of vibration is large, i.e., 7rain is 
much larger than the other rate parameters such as F or (2cc'X) 1/2, then 
z+(U) ~ 7(U) and z_(U)---, O. Also, it is readily seen that the coefficient of 
e x p [ - z  (U)t]  goes to zero in this regime. The form of Eq. (5) is then 
recovered and its solution, described in Eq. (6), is illustrated in Fig. 2b. 
Although the decay in this figure is not logarithmic over the whole range, 
its form for times t such that 7ol~t,,~7olexp(Uo/H) is logarithmic. 
When, on the other hand, H is lowered, Train decreases: the term involving 
A(U) in Eq. (11) continues to dominate over the one involving B(U) until 
a time t sufficiently large that the former becomes vanishingly small, 
leading to a slower rate of decay. Thus, although the decay of (0av)v 
starts off being logarithmic even for small intensities of vibration, there is 
a crossover in its behavior leading to a decrease in the slope of the graph 
(Fig. 2c); this persists for a considerable time before the eventual decay to 
z e r o .  

Let us now interpret these findings in the context of the experimental 
results. In the experiments, (9) the regime of large-intensity vibrations was 
characterized by an apparently logarithmic decay. In our theory, the solu- 
tion for large H in a given region of time is logarithmic (Fig. 2a), but the 
functional form for arbitrary times is more complex. In the large-H regime 
(Fig. 2b), the decay is predominantly independent-particle-like, and the 
"log" decay over a relatively large range of times is a signal of this. The 
regime of small intensities of vibration is more interesting: we interpret the 
initial decay as being due to independent particles ("log" decay), albeit 
with a slower rate. Soon, the collective motion of the clusters takes over, 
so that there are essentially no avalanches due to independent-particle 
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motion;  this occurs in the flat por t ion of the curve of Fig. 2c, where there 
is a lmost  no decrease of slope. These slow motions  of the clusters, when 
cont inued over a long time, generate overburdens at the surface that  are 
metastable (because H is small, there is insufficient energy for particles to 
be ejected): however, when the cumulative effect of these overburdens 
becomes mechanically unstable, the pile collapses. In this limit, we see a 
complicated mix of collective and independent-particle motion.  In  the 
experiments, ~9) flattening of the 0 vs. log t curve at long times for small- 
intensity vibrations was also seen, but it proved impossible to go far 
enough out  in time to observe the final behavior  in the slow regime. It 
seems that  our  theory provides an excellent f ramework within which to 
interpret those experimental results, and suggests what  one might see at 
longer times than those so far observed experimentally. 

We now return to the subject of hysteresis: as mentioned in the intro- 
duction, this is a part icular  characteristic of granular  materials. Our  theory 
shows the effect of hysteresis in the pile, via the "memory  kernel" of 

THETA V5 LOG(TIME) 

I 
- 4  - 2  0 2 

LOG(T) 

Fig. 2. 0av versus log t, with 0,v(0)= 20 in each case: (a) in the absence of coupling, with 
H=  10. (b) for large H (H= 10) in the presence of coupling. The decay is rapid, and is 
logarithmic for the time scales specified in the text. (c) in the presence of coupling, for small 
H (H=0.1). The initial decay is logarithmic until a crossover occurs, indicated by the 
flattening. Eventually, as predicted by Eq. (9), 0~v drops to zero. 



The Langevin Dynamics of Vibrated Powders 1139 

o 

THETA VS LOG(TIME) 

�9 , i . . . .  i . . . .  i . . . .  i . . . .  i . . . .  l , , 

8 

, I , , , , f 

- 4  - 3  - 2  - 1  0 1 

L O G ( T )  

T H E T A  V S  L O G ( T I M E )  

. . . . . . . . . . . . . . . . . . . . . . .  , , 

= , , I , , , , I , , , , I , , i , I , , , , ~ , , , , i , 

- -i 0 I 2 3 

L O G ( T )  

Fig. 2. (Continued) 
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Eq. (9); since F is small, the effects of the initial roughness ~2(0) and slope 
0~v(0) p~ersist for a long time. In addition to the coefficients A(U) and 
B(U), the arguments of the modified Bessel functions in Eq. (10) contain 
these quantities, thus showing their importance for the relaxation 
processes; it may readily be shown from Eqs. (10) and (11) that these 
effects are particularly significant for small intensities of vibration, when the 
coupling of the two processes is comparable to the intensity H of the 
driving force. This is in accord with physical intuition; for small intensities 
of vibration, the predominantly collective relaxation process leads to slow 
configurational changes, so that the memory of initial conditions persists 
for far longer times than is the case when H is large. 

In conclusion, we have devised a novel theory of the relaxation of a 
pile of granular material subjected to vibration. We have defined coor- 
dinates for independent-particle and collective processes within the pile, 
and written down coupled Langevin equations for them. The preexisting 
concepts of granular temperature (4) H and compactivity (2) X have been 
unified within the framework of a consistent theory, which links each 
one to a dynamical variable via fluctuation-dissipation relationships. Our 
theory provides a quantitative illustration of two of the special features of 
powders, viz. dilatancy and hysteresis. The solution of the Langevin equa- 
tions, obtained using a simple decoupling scheme, shows rich and complex 
behavior, which arises from the competition and cooperation between inde- 
pendent-particle and collective relaxations. This solution, and our analysis 
of it, unifies earlier work (3'5'1~ and provides a reasonable basis for the 
interpretation of experiments. (9) 
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